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Generative Adversarial Networks

- A min-max game between two components: a

Noise
Source

generator G and a discriminator D

Generator Discriminator

(Nicholas Gutenberg’s blog)
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Objectives for GAN

- The objective of D:

L(D,g¢) = Eg~p, [log D(z)] + Ezp, [log(l — D(z))]

- The objective of G:

+ the original: © () [108(1 — D(go(2)))]

+ the alternative: [E,._,,) |—1log D(ge(2))

e Why alternative?



Difficulty 1

+using the original form of the objective of G
Conp(2) 108(1 — D(g(2)))]

will result in gradient vanishing issue of D for G
because intuitively, at the very early phase of
training, D is very easy to be confident in detecting
G, so D will output almost always O




Difficulty 1

+using the original form of the objective of G
Conp(2) 108(1 — D(g(2)))]

will result in gradient vanishing issue of D for G
because theoretically, when D is optimal,

minimizing the loss is equal to minimizing the JS
divergence (Arjovsky & Bottou, 2017)




Difficulty 1

-----------

-+ The optimal D for any Prand Py is always:

L [ ]
A
° .

P.(x)

D@ = 5+ P /////\\

andthat L(D*,g9) =2JSD(P,.||P,) —2log?2

so, when D is optimal, minimizing the loss is equal
to minimizing the JS divergence (Arjovsky & Bottou,
2017)

(Goodfellow et al., 2014)



Difficulty 1

- when:

L(D*, g¢) = 2JSD(P,||P,) — 2log 2

-+ The JS divergence for the two distributions P, and
Py is (almost) always log2 because Prand Pghardly
can overlap (Arjovsky & Bottou, 2017)

- This results in vanishing gradient in theory!



The alternative objective

- The alternative objective of G:

L op(z) [—10g D(go(2))]

- Instead of minimizing, let G maximize the log-
probability of the discriminator being mistaken

- It is heuristically motivated that generator can still
learn even when discriminator successfully rejects
all generator samples, but not theoretically
guaranteed

(Goodfellow’s tutorial)



Difficulty 2

- using the alternative form of the objective of G

4

lzwp(z) [_ log D(gg(Z))]

will result in gradient unstable issue and mode
missing problem because theoretically, when D is
optimal, minimizing the loss is equal to minimizing
the KL divergence meanwhile maximizing the JS
divergence (Arjovsky & Bottou, 2017):

KL(Pg, ||Pr) — 2JSD(Py, || Pr),



Difficulty 2

* minimizing the KL divergence meanwhile
maximizing the JS divergence is crazy:

KL(PQQ H]P)’F) o QJSD(IPQQ H]P)r)]

- which results in gradient unstable issue



Difficulty 2

- minimizing the KL divergence is biased:
KL(Pg, ||Pr) — 2JSD(Pg,||Pr)]

+ because KL divergence is asymmetric, and thus it
IS not equally treated when G generates a unreal
sample and when G fails to generate real sample

- Therefore, G will generate too many few-mode but
real samples, a safer strategy
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Solution 1: Encoder-incorporated

- Mode Regularized GANs (Che et al., 2017)

- Tackling the gradient vanishing issue and mode
missing problem by incorporating an additional
encoder E to:

+ (1) “"enforce” Prand Py overlap

* (2) "build a bridge” between fake data and real
data



Mode Missing Problem

towards M; towards M

(Che et al., 2017)



Mode Missing Problem

min max V(G,D) # max min V(G, D)

D in inner loop: convergence to correct distribution

G in inner loop: place all mass on most likely point

Target

Step O Step 5k Step 10k Step 15k Step 20k Step 25k

(Goodfellow’s tutorial)
(Metz et al., 2016)



Mode Regularized GANs

-+ Regularized GANs

- forencoder E: E .., , [\1d(z,Go E(x)) + A2 log D(G o E(x))]

- for generator G:

2, [log D(G(2))] + Ezmp,[M1d(z, G 0 E(z)) + A2 log D(G o E(x))]

- for discriminator D:; same as vanilla GAN



Mode Regularized GANs

-+ Regularized GANs

- forencoder E: E .., , [\1d(z,Go E(x)) + A2 log D(G o E(x))]

- for generator G:

L. [log D(G(2))] + Ezmp,y[M1d(z, G 0 E(x)) + A2 log D(G o E(z))]

- for discriminator D:; same as vanilla GAN

- But it still suffers from gradient vanishing!

- because D is still comparing between real data and fake data



Mode Regularized GANs

- for encoder E:

-+ Manifold-step:

- for generator G:

- Manifold-Diffusion GANs (MDGAN):

L onpaMd(z, G 0 E(z)) + A2 log D(G o E(x))]

Aog D1 (G(E(x;))) — ||xi — G(E(Xz'))“Q

- for discriminator D: log D1 (Xz) + log(l — Dy (G(E(Xz))))

- Diffusion-step:

- for generator G:

log D2(G(2;))

-+ for discriminator D: log Do (G(E(x;))) + log(1 — Ds(z;))



Mode Regularized GANs

- Manifold-Diffusion GANs (MDGAN):

- forencoder - B [A\id(xz,G o E(x)) + A2 log D(G o E(x))]
- Manifold-step:

. forgenerator G:  A\log D1(G(F(x%;))) — ||x; — G(E(Xz))||2
.+ for discriminator D: log D1 (x;) + log(1 — D1(G(F(x;))))

- Diffusion-step:
- for generator G: log DQ(G(Zi))
-+ for discriminator D: log Do (G(E(x;))) + log(1 — Ds(z;))

- D is firstly comparing between real data and the encoded data — much harder!



Mode Regularized GANs
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Solution 1: Encoder-incorporated

- Mode Regularized GANs (Che et al., 2017)
- Energy-based GANs (Zhao et al., 2017)
- Boundary Equilibrium GANs (Berthelot et al., 2017)

* etlc.



Solution 1: Encoder-incorporated

- Energy-based GANs (Zhao et al., 2017)
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- Boundary Equilibrium GANs (Berthelot et al., 2017)
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Solution 1: *Noisy Input

- Add noise to input (both real data and fake data)
before passing into D (Arjovsky & Bottou, 2017)

-+ Add noise to layers in D and G (Zhao et al., 2017)

- Instance Noise (Sgnderby et al., 2017)

- All these are indeed “enforcing” Prand Py to
overlap
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Solution 2: Wasserstein Distance

- Wasserstein GANs (Arjovsky et al., 2017)

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf Er .oz —
( g) VEHI(%T,PQ) (z,y) ’Y[Hx ?/H]




Solution 2: Wasserstein Distance

- Wasserstein GANs (Arjovsky et al., 2017)

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf Er .oz —
( g) VEHI(%T,PQ) (z,y) ’Y[Hx ?/H]

e\Vhy is it superior to KL and JS divergence?



Solution 2: Wasserstein Distance

Wasserstein-1 Distance (Earth-Mover Distance):

WP, P,)= inf B v llz —
( g) nyHl(%’r,IP’g) (z,y) 7[Hx yH]

where II(P,, P, ) denotes the set of all joint distributions v(z, y) whose marginals
are respectively P, and P,. Intuitively, v(z,y) indicates how much “mass”
must be transported from x to y in order to transform the distributions P,
into the distribution P,. The EM distance then is the “cost” of the optimal
transport plan.

(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

wW(P,,P,) =

inf
'YGH(PMPQ)

4:($,y)~7[ |z —y| ]

- The distance is shown to have the desirable
property that under mild assumptions

» It Is continuous everywhere and

- differentiable almost everywhere.

(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf E. .o lz—
(P, Py) i e Lz =yl

- The distance is shown to have the desirable
property that under mild assumptions

* And most importantly, it can reflect the distance
of two distributions even if they do not overlap,
and thus can provide meaningful gradients

(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf E. .o lz—
(P, Py) i e Lz =yl

- By applying the Kantorovich-Rubinstein duality
(Villani, 2008), Wasserstein GANs becomes:

minmax B (D@)] - K [D@)

(Arjovsky et al., 2017)



Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

minwax B D) - E D)

- In other words, D is the set of 1-Lipschitz functions

- To explain Lipschitz continuous is beyond today’s
topic

(Arjovsky et al., 2017)



Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

minwax B D) - E D)

- To satisfy this requirement, WGAN enforces the
weights of D lie within a compact space [-c, ¢/ by

applying weight clipping

(Arjovsky et al., 2017)



Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

minwax B D) - E D)

- Also, WGAN removes the sigmoid layer in D
because by using Wasserstein distance, D Iin
WGAN is doing regression rather than classification

(Arjovsky et al., 2017)



Wasserstein GANs
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(Arjovsky et al., 2017)



Wasserstein estimate

Wasserstein GANs

This new value function of WGAN seems correlate
with the quality of the generated samples:
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(Arjovsky et al., 2017)



Wasserstein GANs
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Wasserstein GANs
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Top: WGAN with the same DCGAN architecture. Bottom: DCGAN

(Arjovsky et al., 2017)



Wasserstein GANs
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"

Top: WGAN with MLP architecture. Bottom: Standard GAN, same architecture.

(Arjovsky et al., 2017)



Thanks for your attention!
Any questions?
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