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Generative Adversarial Networks

• A min-max game between two components: a 
generator G and a discriminator D

(Nicholas Gutenberg’s blog)



GANs Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

(Goodfellow’s tutorial)



Objectives for GAN

• The objective of D:

• The objective of G:

• the original:

• the alternative:

• Why alternative?



Difficulty 1

• using the original form of the objective of G  

will result in gradient vanishing issue of D for G 
because intuitively, at the very early phase of 
training, D is very easy to be confident in detecting 
G, so D will output almost always 0



Difficulty 1

• using the original form of the objective of G  

will result in gradient vanishing issue of D for G 
because theoretically, when D is optimal, 
minimizing the loss is equal to minimizing the JS 
divergence (Arjovsky & Bottou, 2017)



Difficulty 1

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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• The optimal D for any Pr and Pg is always:

and that

so, when D is optimal, minimizing the loss is equal 
to minimizing the JS divergence (Arjovsky & Bottou, 
2017)

(Goodfellow et al., 2014)



Difficulty 1

• when:

• The JS divergence for the two distributions Pr and 
Pg is (almost) always log2 because Pr and Pg hardly 
can overlap (Arjovsky & Bottou, 2017)

• This results in vanishing gradient in theory!



The alternative objective

• The alternative objective of G:

• Instead of minimizing, let G maximize the log-
probability of the discriminator being mistaken

• It is heuristically motivated that generator can still 
learn even when discriminator successfully rejects 
all generator samples, but not theoretically 
guaranteed

(Goodfellow’s tutorial)



Difficulty 2

• using the alternative form of the objective of G  

will result in gradient unstable issue and mode 
missing problem because theoretically, when D is 
optimal, minimizing the loss is equal to minimizing 
the KL divergence meanwhile maximizing the JS 
divergence (Arjovsky & Bottou, 2017):



Difficulty 2

• minimizing the KL divergence meanwhile 
maximizing the JS divergence is crazy:

• which results in gradient unstable issue



Difficulty 2

• minimizing the KL divergence is biased:

• because KL divergence is asymmetric, and thus it 
is not equally treated when G generates a unreal 
sample and when G fails to generate real sample

• Therefore, G will generate too many few-mode but 
real samples, a safer strategy 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Solution 1: Encoder-incorporated

• Mode Regularized GANs (Che et al., 2017)

• Tackling the gradient vanishing issue and mode 
missing problem by incorporating an additional 
encoder E to:

• (1) “enforce” Pr and Pg  overlap 

• (2) “build a bridge” between fake data and real 
data



Mode Missing Problem

generation manifold

M1

M2

∇D

towards M2towards M1

(Che et al., 2017)



Mode Missing Problem

• D in inner loop: convergence to correct distribution

• G in inner loop: place all mass on most likely point

min

G
max

D
V (G,D) 6= max

D
min

G
V (G,D)

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5
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Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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(Metz et al., 2016)
(Goodfellow’s tutorial)



Mode Regularized GANs
• Regularized GANs 

• for encoder E:

• for generator G:

• for discriminator D: same as vanilla GAN



Mode Regularized GANs
• Regularized GANs 

• for encoder E:

• for generator G:

• for discriminator D: same as vanilla GAN

• But it still suffers from gradient vanishing!

• because D is still comparing between real data and fake data



Mode Regularized GANs
• Manifold-Diffusion GANs (MDGAN): 

• for encoder E:

• Manifold-step:

• for generator G:

• for discriminator D:

• Diffusion-step:

• for generator G:

• for discriminator D:



Mode Regularized GANs
• Manifold-Diffusion GANs (MDGAN): 

• for encoder E:

• Manifold-step:

• for generator G:

• for discriminator D:

• Diffusion-step:

• for generator G:

• for discriminator D:

• D is firstly comparing between real data and the encoded data — much harder!



Mode Regularized GANs



Mode Regularized GANs



Solution 1: Encoder-incorporated

• Mode Regularized GANs (Che et al., 2017)

• Energy-based GANs (Zhao et al., 2017)

• Boundary Equilibrium GANs (Berthelot et al., 2017)

• etc.



Solution 1: Encoder-incorporated

• Energy-based GANs (Zhao et al., 2017)

• Boundary Equilibrium GANs (Berthelot et al., 2017)



Solution 1: *Noisy Input

• Add noise to input (both real data and fake data) 
before passing into D (Arjovsky & Bottou, 2017)

• Add noise to layers in D and G (Zhao et al., 2017)

• Instance Noise (Sønderby et al., 2017)

• All these are indeed “enforcing” Pr and Pg  to 
overlap 
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Solution 2: Wasserstein Distance

• Wasserstein GANs (Arjovsky et al., 2017)

• Wasserstein-1 Distance (Earth-Mover Distance):



Solution 2: Wasserstein Distance

• Wasserstein GANs (Arjovsky et al., 2017)

• Wasserstein-1 Distance (Earth-Mover Distance):

•Why is it superior to KL and JS divergence?



Solution 2: Wasserstein Distance

• Wasserstein-1 Distance (Earth-Mover Distance):

(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

• Wasserstein-1 Distance (Earth-Mover Distance): 

• The distance is shown to have the desirable 
property that under mild assumptions 

• it is continuous everywhere and 

• differentiable almost everywhere.
(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

• Wasserstein-1 Distance (Earth-Mover Distance): 

• The distance is shown to have the desirable 
property that under mild assumptions 

• And most importantly, it can reflect the distance 
of two distributions even if they do not overlap, 
and thus can provide meaningful gradients 

(Arjovsky et al., 2017)



Solution 2: Wasserstein Distance

• Wasserstein-1 Distance (Earth-Mover Distance): 

• By applying the Kantorovich-Rubinstein duality 
(Villani, 2008), Wasserstein GANs becomes:

(Arjovsky et al., 2017)



Wasserstein GANs

• This new value function of WGAN gives rise to the 
additional requirement that the discriminator must 
lie within in the space of 1-Lipschitz functions:

• in other words, D is the set of 1-Lipschitz functions

• To explain Lipschitz continuous is beyond today’s 
topic 

(Arjovsky et al., 2017)



Wasserstein GANs

• This new value function of WGAN gives rise to the 
additional requirement that the discriminator must 
lie within in the space of 1-Lipschitz functions:

• To satisfy this requirement, WGAN enforces the 
weights of D lie within a compact space [-c, c] by 
applying weight clipping

(Arjovsky et al., 2017)



Wasserstein GANs

• This new value function of WGAN gives rise to the 
additional requirement that the discriminator must 
lie within in the space of 1-Lipschitz functions:

• Also, WGAN removes the sigmoid layer in D 
because by using Wasserstein distance, D in 
WGAN is doing regression rather than classification

(Arjovsky et al., 2017)



(Arjovsky et al., 2017)

Wasserstein GANs



Wasserstein GANs

• This new value function of WGAN seems correlate 
with the quality of the generated samples:

(Arjovsky et al., 2017)



Wasserstein GANs

(Arjovsky et al., 2017)



Wasserstein GANs

(Arjovsky et al., 2017)



Wasserstein GANs

(Arjovsky et al., 2017)



Wasserstein GANs

(Arjovsky et al., 2017)



Thanks for your attention! 
Any questions?
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