
3D-GAN AC-GAN

AdaGANAffGAN

AL-CGANALI

AMGAN

AnoGAN

ArtGAN

b-GAN

Bayesian GAN

BEGAN

BiGAN

BS-GAN

CGAN

CCGAN

CatGAN

CoGAN

Context-RNN-GAN

C-RNN-GAN

C-VAE-GAN

CycleGAN

DTN

DCGAN

DiscoGAN

DR-GAN

DualGAN

EBGAN
f-GAN

FF-GAN

GAWWN

GoGAN

GP-GAN

IANiGAN

IcGANID-CGAN

InfoGAN
LAPGAN

LR-GAN
LS-GAN

LSGAN

MGAN

MAGANMAD-GAN
MalGANMARTA-GAN

McGAN

MedGAN

MIX+GANMPM-GAN
Head First Generative Adversarial Networks

From Theoretic View

Yanran Li

The Hong Kong Polytechnic University

(https://github.com/kaonashi-tyc/zi2zi)

(https://github.com/junyanz/iGAN)

(Taigman et al., 2017)

(https://junyanz.github.io/CycleGAN/)

(genekogan@Twitter)

Content

• Generative Adversarial Networks

• Basics and Attractiveness

• Difficulties

• Solution 1: Partial and Fine-grained Guidance

• Solution 2: Encoder-incorporated

• Solution 3: Wasserstein Distance

Content

• Generative Adversarial Networks

• Basics and Attractiveness

• Difficulties

• Solution 1: Partial and Fine-grained Guidance

• Solution 2: Encoder-incorporated

• Solution 3: Wasserstein Distance

Generative Adversarial Networks

(Eric Jang’s blog)

Generative Adversarial Networks
• A counterfeiter-police game between two

components: a generator G and a discriminator D

• G: counterfeiter, trying to fool police with fake
currency

• D: policy, trying to detect the counterfeit currency

• Competition drives both to improve, until
counterfeits are indistinguishable from genuine
currency

(Nicholas Gutenberg’s blog)

Generative Adversarial Networks
• A min-max game between two components: a

generator G and a discriminator D

(Nicholas Gutenberg’s blog)

• A min-max game between two components: a
generator G and a discriminator D

Generative Adversarial Networks

(Goodfellow et al., 2014)

D predicting that
real data is genuine

D predicting that
G’s generated data is fake

• A min-max game between two components: a
generator G and a discriminator D

• D’s goal: maximize V(D,G)  
G’s goal: minimize max V(D,G)

Generative Adversarial Networks

D predicting that
real data is genuine

D predicting that
G’s generated data is fake

(Goodfellow et al., 2014)

• Generator Networks

• It is only required that, G is differentiable.

• So, having training data x~pdata(x) 
what we want is a model that can draw samples
x~pmodel(x), where pmodel≈pdata

• Don’t write a formula for pdata(x), just learn to draw
sample directly.

Attractiveness

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

Generator equation

x = G(z;✓

(G)

)

1

zz

xx

–From Economics

“There’s no free lunch.”

Original Generated

Original Generated

Difficulty 1
• The gradient issues existed in deep neural networks

• The deeper, the more difficult

Objectives for GAN
• The objective of D:

• The objective of G:

• the original:

• the alternative:

• Why alternative?

Difficulty 2
• using the original form of the objective of G  

will result in gradient vanishing issue of D for G
because intuitively, at the very early phase of
training, D is very easy to be confident in detecting
G, so D will output almost always 0

Difficulty 2
• using the original form of the objective of G  

will result in gradient vanishing issue of D for G
because theoretically, when D is optimal,
minimizing the loss is equal to minimizing the JS
divergence (Arjovsky & Bottou, 2017)

Difficulty 2

Generating distribution
Real data distribution

Discriminative distribution

• The optimal D for any Pr and Pg is always:

and that

so, when D is optimal, minimizing the loss is equal
to minimizing the JS divergence (Arjovsky & Bottou,
2017)

Difficulty 2

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

(Goodfellow et al., 2014)

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

KL Divergence

Recall KL and JS Divergence

(Colah’s blog)

Bob Alice

KL Divergence

JS Divergence

Be symmetric!

Recall KL and JS Divergence

(Hatena’s blog)

• The optimal D for any Pr and Pg is always:

and that

so, when D is optimal, minimizing the loss is equal
to minimizing the JS divergence (Goodfellow et al.,
2014)

Difficulty 2

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

(Goodfellow et al., 2014)

Difficulty 2
• when:

• The JS divergence for the two distributions Pr and
Pg is (almost) always log2 because Pr and Pg hardly
can overlap (Arjovsky & Bottou, 2017, Theorem
2.1~2.3)

• This results in vanishing gradient in theory!

The alternative objective
• The alternative objective of G:

• Instead of minimizing, let G maximize the log-
probability of the discriminator being mistaken

• It is heuristically motivated that generator can still
learn even when discriminator successfully rejects
all generator samples, but not theoretically
guaranteed

(Goodfellow’s tutorial)

Difficulty 3
• using the alternative form of the objective of G  

will result in gradient unstable issue and mode
missing problem because theoretically, when D is
optimal, minimizing the loss is equal to minimizing
the KL divergence meanwhile maximizing the JS
divergence (Arjovsky & Bottou, 2017, Theorem 2.5):

Recall KL and JS Divergence

(Hatena’s blog)

Difficulty 3
• minimizing the KL divergence meanwhile

maximizing the JS divergence is crazy:

• which results in gradient unstable issue

Difficulty 3
• minimizing the KL divergence only is biased:

• because KL divergence is asymmetric, and thus it
is not equally treated when G generates an unreal
sample and when G fails to generate real sample

• Therefore, G will generate too many few-mode (less
diverse) but real samples , a safer strategy 

Content

• Generative Adversarial Networks

• Basics and Attractiveness

• Difficulties

• Solution 1: Partial and Fine-grained Guidance

• Solution 2: Encoder-incorporated

• Solution 3: Wasserstein Distance

Solution 1.1: Partial Guidance
• Conditional GANs (Mirza & Osindero, 2014)

• Improved GAN (Salimans et al., 2016)

• iGAN/GVM (Zhu et al., 2016)

• pix2pix (Isola et al., 2017)

• GP-GAN (Wu et al., 2017)

Solution 1.1: Partial Guidance
• Conditional GANs (Mirza & Osindero, 2014)

(Mirza & Osindero, 2014)

Solution 1.1: Partial Guidance
• Improved GAN (Salimans et al., 2016)

• feature matching

• minibatch discrimination

(Salimans et al., 2016)

Solution 1.1: Partial Guidance
• iGAN/GVM (Zhu et al., 2016)

• feature matching

• minibatch discrimination

(Zhu et al., 2016)

Solution 1.1: Partial Guidance
• iGAN/GVM (Zhu et al., 2016)

• feature matching

• minibatch discrimination

(Zhu et al., 2016)

Solution 1.1: Partial Guidance
• iGAN/GVM (Zhu et al., 2016)

• feature matching

• minibatch discrimination

(Zhu et al., 2016)

Solution 1.1: Partial Guidance
• iGAN/GVM (Zhu et al., 2016)

• feature matching

• minibatch discrimination

(Zhu’s slides, 2017)

(https://github.com/junyanz/iGAN)

Solution 1.1: Partial Guidance

(Isola et al., 2017)

• pix2pix (Isola et al., 2017)

(Christopher Hesse’s blog)

Solution 1.1: Partial Guidance
• GP-GAN (Wu et al., 2017)

(https://github.com/wuhuikai/GP-GAN)

Solution 1.1: Partial Guidance
• GP-GAN (Wu et al., 2017)

(https://github.com/wuhuikai/GP-GAN)

Solution 1.2: Fine-grained
Guidance

• LAPGAN (Denton et al., 2015)

• Matching-aware Discriminator (Reed et al., 2016)

• StackGAN (Zhang et al., 2016)

• PPGN (Nguyen et al., 2017)

Solution 1.2: Fine-grained
Guidance

• LAPGAN (Denton et al., 2015)

(Denton et al., 2015)

Solution 1.2: Fine-grained
Guidance

• Matching-aware Discriminator (Reed et al., 2016)

• implicitly separate two sources of error: unrealistic
images (for any text), and realistic images of the wrong
class that mismatch the conditioning

(Reed et al., 2016)

(Reed et al., 2016)

Solution 1.2: Fine-grained
Guidance

• StackGAN (Zhang et al., 2016)

(Salimans et al., 2016)

• StackGAN (Zhang et al., 2016)

Solution 1.2: Fine-grained
Guidance

Solution 1.2: Fine-grained
Guidance

• PPGN (Nguyen et al., 2017)

(Nguyen et al., 2017)

(Nguyen et al., 2017)

(Nguyen et al., 2017)

Solution 1.3: Special Architecture
• DCGAN (Radford et al., 2016)

• pix2pix (Isola et al., 2017)

• GP-GAN (Wu et al., 2017)

Solution 1.3: Special Architecture
• DCGAN (Radford et al., 2016)

(Radford et al., 2016)

Solution 1.3: Special Architecture
• DCGAN (Radford et al., 2016)

• Replace any pooling layers with strided convolutions
(discriminator) and fractional-strided convolutions
(generator)

• Use batchnorm in both the generator and the discriminator

• Remove fully connected hidden layers

• Use ReLU activation in generator for all layers except for
the output, which uses Tanh; Use LeakyReLU activation in
the discriminator for all layers

(Radford et al., 2016)

(Radford et al., 2016)

• pix2pix (Isola et al., 2017)

Solution 1.3: Special Architecture

(Isola et al., 2017)

Solution 1.3: Special Architecture
• GP-GAN (Wu et al., 2017)

(https://github.com/wuhuikai/GP-GAN)

Difficulty 1
• The gradient issues existed in deep neural networks

• The deeper, the more difficult

Tackled!

Content

• Generative Adversarial Networks

• Basics and Attractiveness

• Difficulties

• Solution 1: Partial and Fine-grained Guidance

• Solution 2: Encoder-incorporated

• Solution 3: Wasserstein Distance

Solution 2: Encoder-incorporated
• Mode Regularized GANs (Che et al., 2017)

• Tackling the gradient vanishing issue and mode
missing problem by incorporating an additional
encoder E to:

• (1) “enforce” Pr and Pg overlap

• (2) “build a bridge” between fake data and real
data

Mode Missing Problem

generation manifold

M1

M2

∇D

towards M2towards M1

(Che et al., 2017)

Mode Missing Problem

• D in inner loop: convergence to correct distribution

• G in inner loop: place all mass on most likely point

min

G
max

D
V (G,D) 6= max

D
min

G
V (G,D)

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al., 2016)
(Goodfellow’s tutorial)

Mode Regularized GANs
• Regularized GANs

• for encoder E:

• for generator G:

• for discriminator D: same as vanilla GAN

Mode Regularized GANs
• Regularized GANs

• for encoder E:

• for generator G:

• for discriminator D: same as vanilla GAN

• But it still suffers from gradient vanishing!

• because D is still comparing between real data and fake data

Mode Regularized GANs
• Manifold-Diffusion GANs (MDGAN):

• Manifold-step:

• Try to match the generation manifold and the real data
manifold

• Diffusion-step:

• Try to distribute the probability mass on the generation
manifold fairly according to the real data distribution

 

Mode Regularized GANs
• Manifold-Diffusion GANs (MDGAN):

• Manifold-step:

• Try to match the generation manifold and the real data
manifold

• Diffusion-step:

• Try to distribute the probability mass on the generation
manifold fairly according to the real data distribution

• D is firstly comparing between real data and the encoded data
— much harder!

Mode Regularized GANs

(Che et al., 2017)

Mode Regularized GANs

(Che et al., 2017)

Solution 2: Encoder-incorporated
• Mode Regularized GANs (Che et al., 2017)

• Energy-based GANs (Zhao et al., 2017)

• Boundary Equilibrium GANs (Berthelot et al., 2017)

• etc.

Solution 2: Encoder-incorporated
• Energy-based GANs (Zhao et al., 2017)

• Boundary Equilibrium GANs (Berthelot et al., 2017)

(Berthelot et al., 2017)
(Zhao et al., 2017)

Solution 2: *Noisy Input
• Add noise to input (both real data and fake data)

before passing into D (Arjovsky & Bottou, 2017,
Theorem 3.2)

• Add noise to layers in D and G (Zhao et al., 2017)

• Instance Noise (Sønderby et al., 2017)

• All these are indeed “enforcing” Pr and Pg to overlap

Review Mode Missing Problem
• CycleGAN (Zhu et al., 2017)

• DiscoGAN (Kim et al., 2017)

• DualGANs (Yi et al., 2017)

(Kim et al., 2017)

Solution 2: Encoders-incorporated
• CycleGAN (Zhu et al., 2017)

• DiscoGAN (Kim et al., 2017)

• DualGAN (Yi et al., 2017)

(Zhu et al., 2017)

Solution 2: Encoders-incorporated
• CycleGAN (Zhu et al., 2017)

(Zhu et al., 2017)

(https://junyanz.github.io/CycleGAN/)

Solution 2: Encoders-incorporated
• CycleGAN (Zhu et al., 2017)

• Di

(Zhu et al., 2017)

Solution 2: Encoders-incorporated
• CycleGAN (Zhu et al., 2017)

• BiGAN (Donahue et al., 2017; Dumoulin et al., 2017)

• G: Z—> X + F: X—> Z

(Dumoulin et al., 2017)

Solution 2: Encoders-incorporated
• DiscoGAN (Kim et al., 2017)

(Zhu et al., 2017)

Solution 2: Encoders-incorporated
• DiscoGAN (Kim et al., 2017)

(Zhu et al., 2017)

Difficulty 3
• minimizing the KL divergence only is biased:

• because KL divergence is asymmetric, and thus it
is not equally treated when G generates an unreal
sample and when G fails to generate real sample

• Therefore, G will generate too many few-mode (less
diverse) but real samples , a safer strategy 

Tackled!

Content

• Generative Adversarial Networks

• Basics and Attractiveness

• Difficulties

• Solution 1: Partial and Fine-grained Guidance

• Solution 2: Encoder-incorporated

• Solution 3: Wasserstein Distance

Solution 3: Wasserstein Distance
• Wasserstein GANs (Arjovsky et al., 2017)

• Wasserstein-1 Distance (Earth-Mover Distance):

Solution 3: Wasserstein Distance
• Wasserstein GANs (Arjovsky et al., 2017)

• Wasserstein-1 Distance (Earth-Mover Distance):

•Why is it superior to KL and JS divergence?

Solution 3: Wasserstein Distance
• Wasserstein-1 Distance (Earth-Mover Distance):

(Arjovsky et al., 2017)

Solution 3: Earth Move Distance
• Wasserstein-1 Distance (Earth-Mover Distance):

Solution 3: Earth Move Distance
• Wasserstein-1 Distance (Earth-Mover Distance):

(Vincent Herrmann’s blog)

Solution 3: Wasserstein Distance
• Wasserstein-1 Distance (Earth-Mover Distance): 

• The distance is shown to have the desirable
property that under mild assumptions

• It is continuous everywhere and

• differentiable almost everywhere.

(Arjovsky et al., 2017)

Solution 3: Wasserstein Distance
• Wasserstein-1 Distance (Earth-Mover Distance): 

• The distance is shown to have the desirable
property that under mild assumptions

• And most importantly, it can reflect the distance
of two distributions even if they do not overlap,
and thus can provide meaningful gradients

(Arjovsky et al., 2017)

Solution 3: Wasserstein Distance

(Arjovsky et al., 2017)

Wasserstein Distance JS Divergence

Solution 3: Wasserstein Distance
• Wasserstein-1 Distance (Earth-Mover Distance): 

• By applying the Kantorovich-Rubinstein duality
(Villani, 2008), Wasserstein GANs becomes:

(Arjovsky et al., 2017)

Wasserstein GANs
• This new value function of WGAN gives rise to the

additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

• In other words, D is the set of 1-Lipschitz functions

• Lipschitz continuity

(Arjovsky et al., 2017)

Lipschitz Continuity
• real-value function:

• positive constant: K

• In other words, a Lipschitz continuous function has
bounded first derivative. Intuitively, the slope of a KK-
Lipschitz function never exceeds KK, for a more
general definition of slope.

(Wikipedia)

Wasserstein GANs
• This new value function of WGAN gives rise to the

additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

• To satisfy this requirement, WGAN enforces the
weights of D lie within a compact space [-c, c] by
applying weight clipping

(Arjovsky et al., 2017)

Wasserstein GANs
• This new value function of WGAN gives rise to the

additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

• Also, WGAN removes the sigmoid layer in D
because by using Wasserstein distance, D in
WGAN is doing regression rather than classification

(Arjovsky et al., 2017)

(Arjovsky et al., 2017)

Wasserstein GANs

Difficulty 2
• when:

• The JS divergence for the two distributions Pr and
Pg is (almost) always log2 because Pr and Pg hardly
can overlap (Arjovsky & Bottou, 2017, Theorem
2.1~2.3)

• This results in vanishing gradient in theory!

Tackled!

Wasserstein GANs

• This new value function of WGAN seems correlate
with the quality of the generated samples:

(Arjovsky et al., 2017)

Wasserstein GANs

(Arjovsky et al., 2017)

Wasserstein GANs

(Arjovsky et al., 2017)

Wasserstein GANs

(Arjovsky et al., 2017)

Wasserstein GANs

(Arjovsky et al., 2017)

Improved Wasserstein GANs
• The drawbacks of weight clipping

• bias D toward much simpler functions

(Gulrajani et al., 2017)

Improved Wasserstein GANs
• The drawbacks of weight clipping

(Gulrajani et al., 2017)

Improved Wasserstein GANs
• The drawbacks of weight clipping

(Gulrajani et al., 2017)

Improved Wasserstein GANs
• The optimal D under WGAN:

• has gradients with norm 1 almost everywhere
under Pr and Pg.

• The objective of improved WGAN-GP:

(Gulrajani et al., 2017)

Improved Wasserstein GANs

Improved Wasserstein GANs

Take-home Messages
• Try WGAN-GP

• Try noisy input

• Try specific architecture (with careful analysis of the
certain problem)

• Try different type of the noise

• Checklist here: https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks

Thanks for your attention!
Any questions?

References
• Arjovsky and Bottou, “Towards Principled Methods for Training Generative

Adversarial Networks”. ICLR 2017.

• Goodfellow et al., “Generative Adversarial Networks”. ICLR 2014.

• Che et al., “Mode Regularized Generative Adversarial Networks”. ICLR 2017.

• Zhao et al., “Energy-based Generative Adversarial Networks”. ICLR 2017.

• Berthelot et al., “BEGAN: Boundary Equilibrium Generative Adversarial Networks”.
arXiv preprint 2017.

• Sønderby, et al., “Amortised MAP Inference for Image Super-Resolution”. ICLR 2017.

• Arjovsky et al., “Wasserstein GANs”. ICML 2017.

• Villani, Cedric. “Optimal transport: old and new”, volume 338. Springer Science &
Business Media, 2008

References
• Jun-Yan Zhu*, Taesung Park*, Phillip Isola, Alexei A. Efros. “Unpaired Image-to-

Image Translation using Cycle-Consistent Adversarial Networks”. arXiv preprint 2017.

• Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim. “Learning to
Discover Cross-Domain Relations with Generative Adversarial Networks”. ICML
2017.

• Zili Yi, Hao Zhang, Ping Tan, Minglun Gong. “DualGAN: Unsupervised Dual Learning
for Image-to-Image Translation”. arXiv preprint 2017.

• Jeff Donahue, Philipp Krähenbühl, Trevor Darrell. “Adversarial Feature Learning”.
ICLR 2017.

• Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, Aaron Courville. “Adversarially Learned Inference”. ICLR 2017.

• Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville.
“Improved Training of Wasserstein GANs”. arXiv preprint 2017.

References
• Mehdi Mirza, Simon Osindero. “Conditional Generative Adversarial Nets”. arXiv preprint 2014.

• Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus. “Deep Generative Image Models
using a Laplacian Pyramid of Adversarial Networks”. arXiv preprint 2015.

• Alec Radford, Luke Metz, Soumith Chintala. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. ICLR 2016.

• Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee.
“Generative Adversarial Text to Image Synthesis”. ICML 2016.

• Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen.
“Improved Techniques for Training GANs”. arXiv preprint 2016.

• Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris
Metaxas. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative
Adversarial Networks”. arXiv preprint 2016.

• Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. “Image-to-Image Translation with
Conditional Adversarial Networks”. CVPR 2017.

References
• Yaniv Taigman, Adam Polyak, Lior Wolf. “Unsupervised Cross-Domain Image

Generation”. ICLR 2017.

• Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, Yoshua Bengio. “Generative Adversarial Nets”. NIPS 2014.

• Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman and Alexei A. Efros. “Generative Visual
Manipulation on the Natural Image Manifold”, ECCV 2016.

• Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang. “GP-GAN: Towards Realistic High-
Resolution Image Blending”. arXiv preprint 2017.

• Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, Jason Yosinski. “Plug & Play
Generative Networks: Conditional Iterative Generation of Images in Latent Space”. CVPR
2017.

