Head First Generative Adversarial Networks
From Theoretic View

Yanran Li

The Hong Kong Polytechnic University

>\

7K

WO O3RN S OB S o

EYH O F S DD M

)

—

=

S I

=t

A N

(https://github.com/kaonashi-tyc/zi2zi)

© Generative image Manipulation

(https://github.com/junyanz/iGAN)

User edits

Labels to Street Scene Labels to Facade BW to Color

output
Ae|I to Map i

output
Edges to Photo

(Taigman et al., 2017)

(https://junyanz.github.io/Cycle GAN/)

Summer _ Winter

: : winter —» summer

=4

Phtograph Cezane

(genekogan@ Twitter)

Content

- Generative Adversarial Networks

- Basics and Attractiveness
- Difficulties

- Solution 1: Partial and Fine-grained Guidance

- Solution 2: Encoder-incorporated

- Solution 3: Wasserstein Distance

Content

- Generative Adversarial Networks

- Basics and Attractiveness

- Difficulties

Generative Adversarial Networks

gx

g

0.6551

(RNG) ey

N

Bq

(Eric Jang’s blog)

Generative Adversarial Networks

A counterfeiter-police game between two
components: a generator G and a discriminator D

- @G: counterfeiter, trying to fool police with fake
currency

- D: policy, trying to detect the counterfeit currency

- Competition drives both to improve, until
counterfeits are indistinguishable from genuine
currency

(Nicholas Gutenberg’s blog)

Generative Adversarial Networks

- A min-max game between two components: a

Noise
Source

generator G and a discriminator D

Discriminator

Generator

(Nicholas Gutenberg’s blog)

Generative Adversarial Networks

- A min-max game between two components: a
generator G and a discriminator D

minmax V (D, G) =
G D

gw’\’pdala(m) [lOg D(.’L’)] T

D predicting that
real data is genuine

Czmpa (2) 10g(1 — D(G(2)))]

D predicting that

G’s generated data is fake

(Goodfellow et al., 2014)

Generative Adversarial Networks

- A min-max game between two components: a
generator G and a discriminator D

mén max V(D,G) = Egmppu(x)1og D(x)] + E.np, (2)log(l — D(G(2)))]

D predicting that D predicting that
real data is genuine G’s generated data is fake

* D’s goal: maximize V(D,G)
G’s goal: minimize max V(D,G)

(Goodfellow et al., 2014)

Attractiveness

- Generator Networks « = G(z;60'“))
- It is only required that, G is differentiable. @

- S0, having training data x~pdata(X)
what we want is a model that can draw samples
XNPmodeI(X), where Pmodel=Pdata

- Don’t write a formula for pgata(X), just learn to draw
sample directly.

“There’s no free lunch.”

—From Economics

Original Generated

Original Generated

Difficulty 1

The gradient issues existed in deep neural networks

- The deeper, the more difficult

000%

A

jood Jae

16 '"uad gXF

A

ZI6 ‘Auad gX§

716 ‘A0 gXE

A

ZTS ‘MO EXE

16 ‘Auad gX§

i A

| 2/'z15 “Au0d gx¢

‘eo
-
“—.e

95z 'AIad £XE

4

957 'AIOD £XE

9ST AU EXE

A

9ST "AUOD EXE

95z 'AIad £XE

A

957 '\IOD £XF

9ST "AU0d EXE

A

9ST AU EXE

9ST AU EXE

4

9ST "AU0 EXE

Pt _ 95z "\I0d £XE

A A

| 7/'957 ‘Au03 £XE

.
.
-
S

lll

BT ‘M0 EXE

4

BTT ‘AUOI EXE

BTT 'M0D £XE

4

871 'Au0d £xf

BT 'AUOD EXE

A

BTT 'M0D gXE

o | 871 Auoo gxg

A A
e | 7/’BTr ‘wwod gxg

.-
-
-
kT

...... ’

$9 ‘AUDD EXE

4

$9 ‘AUDD EXE

$9 ‘AUOD £XE

A

9 ‘AUOD £XE

A

_
_
| v avodgxg
_
_

$9 ‘ALOD £XE

S — — — — — S— —— — — — S— — — — — —— — L — — S — S — — S— — — — S —

7/ 'load

4

| 7/'va ‘nuoo oy

t

afew|

Objectives for GAN

- The objective of D:

L(D, g9) = Ez~p, [log D(z)] + Eznp, [log(1 — D(z)),

- The objective of G:

- the original: Lo nop(2) 108(1 — D(go(2)))]

+ the alternative: K, ,(») —log D(ge(2)))

e Why alternative?

Difficulty 2

+ using the original form of the objective of G

Conop(2)10g(1 — D(ge(2)))]

will result in gradient vanishing issue of D for G
because intuitively, at the very early phase of
training, D is very easy to be confident in detecting
G, so D will output almost always O

Difficulty 2

+ using the original form of the objective of G

zwp(z) [lOg(l o D(QQ(Z)))]

will result in gradient vanishing issue of D for G
because theoretically, when D is optimal,

minimizing the loss is equal to minimizing the JS
divergence (Arjovsky & Bottou, 2017)

Difficulty 2

Discriminative distribution
' Real data distribution

v Generating distribution

. . .
.
. . e . o

.
oy
' ‘. L
v, L
.
., x

Y/ N/

(a) (b) (c) (d)

Difficulty 2

-+ The optimal D for any Prand Py is alway

andthat L(D*, g9) =2JSD(P,.||P,) —2log?2

so, when D is optimal, minimizing the loss is equal
to minimizing the JS divergence (Arjovsky & Bottou,
2017)

(Goodfellow et al., 2014)

Bob

Recall KL and JS Divergence

p(x)

o

/4 | "cat”
/8 ["fish"|
/2 "bird"

Dog Lover's
Word Frequency

lldogll

q(x)

1/8 | udogu ‘

1/

1/

!

ol

llcatll

Ilﬁshll

"bird"

Cat Lover's

Alice

Word Frequency

(Colah’s blog)

Recall KL and JS Divergence

Cross-Entropy: H (q)

K
. 2 Average Length
o of message from q(x)
— | = using code for p(x).
Bob Al H,(q) Z()log(l)
ice q) =) qlx —
’ - *\p)

(Colah’s blog)

Recall KL and JS Divergence

Cross-Entropy: H (q)

K
. 2 Average Length
o of message from q(x)
— | = using code for p(x).
Bob Al H,(q) Z()log(l)
ice q) =) qlx —
’ - *\p)

(Colah’s blog)

Recall KL and JS Divergence

H(p) = Hyp) = 175bits ___ Hy(p) =2375 bits _

p(x) I
| €I)]
- L,(x
T Ly(x)
L2
H,(q) = 2.25 bits H(q) = H,(q) = 1.75 bltb;
T3 I
T4 q(z) q(z) |
Lp(x) L,(z)

Bob Alice

H,(q) # H,(p)

(Colah’s blog)

Recall KL and JS Divergence

H(p)
KN H,(p)
“ 2 Dq (p)
. H(q)
ig :1:: Hp(Q)
- l)p(Q)
Bob Alice

Hy,(q) # Hy(p)
KL Divergence D,(p) = H,(p) — H(p)

(Colah’s blog)

Recall KL and JS Divergence

Lo |
) JS Divergence
- 1 1
o D;s(plq) = Dys(qlp) = 5DKL(P|’”) + §DKL(6]|’”)
- & r=4(p+9
_ Be symmetric!
Bob Alice

H,(q) # Hy(p)
KL Divergence D,(p) = H,(p) — H(p)

(Colah’s blog)

Recall KL and JS Divergence

KLD:0.000,)SD:0.000 KLD:0.125,)SD:0.030 KLD:0.500,)SD:0.111
KLD:1.125,)SD:0.221 KLD:2.000,)SD:0.337 KLD:3.125,)SD:0.442
KLD:4.500,)SD:0.527 KLD:6.125,)SD:0.590 KLD:8.000,)SD:0.633

L Ll L | Ll Ll L | Ll L Ll | Ll L Ll Ll |

(Hatena’s blog)

Difficulty 2

-+ The optimal D for any Prand Py is alway

andthat L(D*, g9) =2JSD(P,.||P,) —2log?2

so, when D is optimal, minimizing the loss is equal
to minimizing the JS divergence (Goodfellow et al.,
2014)

(Goodfellow et al., 2014)

Difficulty 2

- when:

L(D*, g¢) = 2JSD(P,||P,) — 2log 2

-+ The JS divergence for the two distributions P and
Py is (almost) always log2 because Prand Py hardly
can overlap (Arjovsky & Bottou, 2017, Theorem
2.1~2.3)

- This results in vanishing gradient in theory!

The alternative objective

- The alternative objective of G:

ﬂzwp(z) [_ log D(QQ(Z))]

- Instead of minimizing, let G maximize the log-
probability of the discriminator being mistaken

- It is heuristically motivated that generator can still
learn even when discriminator successfully rejects
all generator samples, but not theoretically

guaranteed

(Goodfellow’s tutorial)

Difficulty 3

- using the alternative form of the objective of G

4

j‘zwp(z) [_ log D(QQ(Z))]

will result in gradient unstable issue and mode

missing problem because theoretically, when D is
optimal, minimizing the loss is equal to minimizing
the KL divergence meanwhile maximizing the JS
divergence (Arjovsky & Bottou, 2017, Theorem 2.5):

KL(Pg, ||Pr) — 2JSD(Py, ||Pr),

Recall KL and JS Divergence

KLD:0.000,)SD:0.000 KLD:0.125,)SD:0.030 KLD:0.500,)SD:0.111
KLD:1.125,)SD:0.221 KLD:2.000,)SD:0.337 KLD:3.125,)SD:0.442
KLD:4.500,)SD:0.527 KLD:6.125,)SD:0.590 KLD:8.000,)SD:0.633

L Ll L | Ll Ll L | Ll L Ll | Ll L Ll Ll |

(Hatena’s blog)

Difficulty 3

 minimizing the KL divergence meanwhile
maximizing the JS divergence is crazy:

KL(]P)QO HPT) o QJSD(]P)QQ HPT)]

- which results in gradient unstable issue

Difficulty 3

- minimizing the KL divergence only is biased:

KL(Pg, ||Pr) — 2JSD(Pyg, ||Pr),

- because KL divergence is asymmetric, and thus it
IS not equally treated when G generates an unreal
sample and when G fails to generate real sample

- Therefore, G will generate too many few-mode (less
diverse) but real samples , a safer strategy

Content

- Solution 1: Partial and Fine-grained Guidance

Solution 1.1: Partial Guidance

- Conditional GANs (Mirza & Osindero, 2014)
- Improved GAN (Salimans et al., 2016)

- IGAN/GVM (Zhu et al., 2016)

- pix2pix (Isola et al., 2017)

. GP-GAN (Wu et al., 2017)

Solution 1.1: Partial Guidance

- Conditional GANs (Mirza & Osindero, 2014)

mci;n max V(D,G) = Egmppu(a) log D(z|y)] + E,p. (2)[log(1 — D(G(z|y)))]

! Y /‘\ /:\-. O B v
"()()()()() A\ A A A A J
el Y Y Y 1

OOOOQ”V”””\
B\ A A A A 4 y‘

(Mirza & Osindero, 2014)

Solution 1.1: Partial Guidance

Improved GAN (Salimans et al., 2016)

- feature matching : /Ml N 2l
Epnpyf(®) — Epn ‘z F(G(2))|2 —— ko)]
| poat (Z) p=(2)£(G(2))]]2 i T /\Mz)

minibatch discrimination

Figure 1: Figure sketches how mini-
batch discrimination works. Features
f(x;) from sample x; are multiplied
through a tensor 7', and cross-sample
distance 1s computed.

(Salimans et al., 2016)

Solution 1.1: Partial Guidance

IGAN/GVM (Zhu et al., 2016)

rr LY.

(a) original photo (e) different degree of image manipulation
gmalp & g p

Project ‘ Edit Transfer
(c) Editing U/\

< /‘-JJJJ

(b) projection on manifold (d) smooth transition between the original and edited projection

(Zhu et al., 2016)

Solution 1.1: Partial Guidance

. iIGAN/GVM (Zhu et al., 2016)

I B g g g

(a) User constraints v, at different update steps

<l IF'g //. o w2l ’

(b) Updated images according to user edits
< <
- || & | <2 IE /,/

N o’ av

o

(¢) Linear interpolation between G (zy) and G (z;)

Solution 1.1: Partial Guidance

- IGAN/GVM (Zhu et al., 2016)

50000005 - JJJJOO#Ol
PSP SE - ST

- SO PP PSP P _

(Zhu et al., 2016)

Solution 1.1: Partial Guidance

- IGAN/GVM (Zhu et al., 2016)

Motion (u, v)+ Color (A344): estimate per-pixel geometric and color variation

x,y,t)—Al-I(x y-Hu, t+1)||°+ o5 (|| Vu||*+ || W ||*)+ 0. || VA||*dzdy
[[11,0~ Ky fd e+ D+ (V4 1902+ o 94

data term spatial reg color reg

Y

Y 4

G(zg

4

G(21)

r Y .

(Zhu’s slides, 2017)

Linear Interpolation in z space

SIS

© Generative image Manipulation

(https://github.com/junyanz/iGAN)

User edits

Solution 1.1: Partial Guidance

pix2pix (Isola et al., 2017) Ppositive examples Negative examples

Real or fake pair? Real or fake pair?

G tries to synthesize fake
images that fool D

D tries to identify the fakes

(Isola et al., 2017)

INPUT TARGET INPUT OUTPUT generator INPUT

3 0 SRR .

\ 4 \ 4
in unknown in unknown
discriminator fe— d|scnr_n|nator » discriminator
weights
guess guess
in in
ref compare compare ref
emnor . ¥ eror
optimizer

®

(Christopher Hesse’s blog)

Labels to Street Scene Labels to Facade BW to Color

output
Ae|I to Map i

output
Edges to Photo

Solution 1.1: Partial Guidance

. GP-GAN (Wu et al., 2017)

source destination mask composited blended

(https://github.com/wuhuikai/GP-GAN)

(d)

Solution 1.1: Partial Guidance

GP-GAN (Wu et al., 2017)

”,."/—-‘— - - ;""x\..“ '.7 ‘
' Color Constraint
-)

Blending GAN G (x)

.. l e Y
Poisson Constraint Gaussian-Poisson -
- { P(xp) } » [Equation H(xh)J -

2l | B
_ gradient J Xh

(https://github.com/wuhuikai/GP-GAN)

Solution 1.2: Fine-grained
Guidance

- LAPGAN (Denton et al., 2015)

- Matching-aware Discriminator (Reed et al., 2016)

- StackGAN (Zhang et al., 2016)

- PPGN (Nguyen et al., 2017)

Solution 1.2: Fine-grained

Guidance
- LAPGAN (Denton et al., 2015)

mm max Eh A~ppaa(h,]) [log D(h l)] +]Ezrva se(2),l~pi(1) [log(l - D(G(za l)a l))]

(Denton et al., 2015)

Solution 1.2: Fine-grained
Guidance

- Matching-aware Discriminator (Reed et al., 2016)

- Implicitly separate two sources of error: unrealistic
images (for any text), and realistic images of the wrong
class that mismatch the conditioning

t < G(z, h) {Forward through generator }

s <— D(x, h) {real image, right text}

Sw < D(z, h) {real image, wrong text}

s¢ < D(z, h) {fake image, right text}

Lp < log(s,) + (log(1 — sy) + log(1l — s¢))/2

(Reed et al., 2016)

Text descriptions Images >

(content) (style)

AN
r A

The bird has a yellow breast with grey
features and a small beak.

This is a large white bird with black
wings and a red head.

A small bird with a black head and
wings and features grey wings.

This bird has a white breast, brown
and white coloring on its head and
wings, and a thin pointy beak.

A small bird with white base and black
stripes throughout its belly, head, and
feathers.

A small sized bird that has a cream belly
and a short pointed bill. |

(Reed et al., 2016)

Solution 1.2: Fine-grained

Guidance
- StackGAN (Zhang et al., 2016)

- —————

' |

This bird is grey with white on its ' Conditioning !
chest and has a very short beak ' Augmentation

|

256 x 256
generated sample

encrated le
. —yd Residual

blocks

This bird is grey with white on its @
chest and has a very short beak

This bird is grey with white on its
chest and has a very short beak

Solution 1.2: Fine-grained

Guidance
- StackGAN (Zhang et al., 2016)

This flower has This flower 1s This flower 1s This flower has This flower has

This flower has long thin pink, white, white and upturned petals petals that are
Text This flower has a lot of small yellow petals and yellow in yellow in color, which are thin dark pink with
description petals that are purple petals in and a lot of color, and has with petals that and orange white edges
white and has a dome-like yellow anthers petals that are are wavy and with rounded and pink
pink shading configuration in the center striped smooth edges stamen
64x64
GAN-INT-CLS
[22]
256x256

StackGAN

olution 1.2: Fine-grained
Guidance

- PPGN (Nguyen et al., 2017

(Nguyen et al., 2017)

Pre-trained convnet for image classification ————
Ly

labels
Denoising auto-encoder for h

image pool5 fc6
E2 E2
(a) Encoder network E
Lh hA Q-L—h—lo h
E; —-le hy Denoising auto-encoder for h, 1 rl
Auto-encoder for h,
) [) [

=
t

|

|

‘
=

Limg X + noise ‘B— hqy+ noise‘B— h + noise—@— Limg

or x l forx |

AN oy E w GAN for x E E
.

l l “real” < - - “fake” “rea
" L
GAN

III

“real” < - - “fake” “rea

L GAN
(c) Joint PPGN-h

(b) Noiseless joint PPGN-h

(Nguyen et al., 2017)

b o
e

Solution 1.3: Special Architecture

- DCGAN (Radford et al., 2016)
- pix2pix (Isola et al., 2017)

. GP-GAN (Wu et al., 2017)

Solution 1.3: Special Architecture

- DCGAN (Radford et al., 2016)

100 z -

—

(Radford et al., 2016)

Solution 1.3: Special Architecture

- DCGAN (Radford et al., 2016)

- Replace any pooling layers with strided convolutions
(discriminator) and fractional-strided convolutions
(generator)

- Use batchnorm in both the generator and the discriminator
- Remove fully connected hidden layers

- Use RelLU activation in generator for all layers except for
the output, which uses Tanh; Use LeakyRelLU activation in
the discriminator for all layers

(Radford et al., 2016)

.i'»}‘, ‘

=

.
y.ﬂ -
,'_

Radford et al., 2016)

(

Solution 1.3: Special Architecture

- pix2pix (Isola et al., 2017)

Encoder-decoder

(Isola et al., 2017)

Solution 1.3: Special Architecture

GP-GAN (Wu et al., 2017)

| Blending GAN G (x) X
Encoder , Decoder
< | g >
4000
64 f o] s ;1 |
N’f | 32 128 128 32
16 256 : | 256 16
| oA 164 4 52 b}, 512 8 2~
) J , ! . > > L(x,x4)
64 32 16 8 4 SR & 8 16 32 64
4x4| | / 4x4 4x4 4x4 4x4 Uxa 4x4 4x4 — 4x4 | /1x4
(conv) (conv) (conv) (conv) (con¥) —(dconv) (dconv) (dconv) (dconv) (dconv)i

X1

Difficu

The gradient issues existed in deep neural networks

- The deeper, the more difficult

| 0007 3

A

jood Jae

Z16G 'Auad gX§

A

ZI6 ‘Auad gX§

ZTS ‘AU EXE

A

ZTS ‘MO EXE

16 ‘Auad gX§

i A

| 2/'71s ‘Au0d £x¢

e
-
“—.e

957 'AUQd EXE

4

957 'AIOD £XE

9ST AU EXE

A

9ST "AUOD EXE

95z 'AIad £XE

A

957 '\IOD £XF

9ST "AU0d EXE

A

9ST AU EXE

9ST AU EXE

4

9ST "AU0 EXE

Pt — 95z "\I0d £XE

A A

| 7/'957 ‘Au03 £XE

.
.
-
S

BT ‘M0 EXE

4

BT ‘MIOI EXE

BTT 'M0D £XE

4

BZT 'M0D £XE

BTT ‘0D g£XE

A

BTT 'M0D gXE

e | 821 'Auod Exg

A A
.. | Z/’BTT ‘w03 gxg

.-
-
-
kT

...... ’

9 ‘AUDD EXE

4

$9 ‘AUDD EXE

$9 ‘AUOD £XE

A

9 ‘AUOD £XE

A

_
_
| v avodgxg
_
|

$9 ‘ALOD £XE

7/ '|oad

4

| 7/'va ‘nuoo oy

t

afew|

Content

- Solution 2: Encoder-incorporated

Solution 2: Encoder-incorporated

- Mode Regularized GANs (Che et al., 2017)

- Tackling the gradient vanishing issue and mode
missing problem by incorporating an additional
encoder E to:

+ (1) “"enforce” Prand Py overlap

* (2) "build a bridge” between fake data and real
data

Mode Missing Problem

towards M; towards M

(Che et al., 2017)

Mode Missing Problem

min max V(G,D) # max min V(G, D)

D in inner loop: convergence to correct distribution

G in inner loop: place all mass on most likely point

Target

Step O Step 5k Step 10k Step 15k Step 20k Step 25k

(Goodfellow’s tutorial)
(Metz et al., 2016)

Mode Regularized GANs

-+ Regularized GANs

- forencoder E: E;p, [M1d(x,Go E(z)) + A2log D(G o E(z))]
- for generator G:

—E.|log D(G(2))] + Eznpy[M1d(z, G o E(x)) + A2 log D(G o E(x))]

- for discriminator D: same as vanilla GAN

Mode Regularized GANs

-+ Regularized GANs

. for encoder E: E,,,,[Md(z,G o E(x)) + Ay log D(G o E(x))]

- for generator G:

. [log D(G(2))] 4+ Egapy [Md(z, G 0 E(z)) + XA2log D(G o E(z))]

- for discriminator D: same as vanilla GAN

- But it still suffers from gradient vanishing!

- because D is still comparing between real data and fake data

Mode Regularized GANs

- Manifold-Diffusion GANs (MDGAN):

- Manifold-step:

- Try to match the generation manifold and the real data
manifold

- Diffusion-step:

- Try to distribute the probability mass on the generation
manifold fairly according to the real data distribution

Mode Regularized GANs

- Manifold-Diffusion GANs (MDGAN):

- Manifold-step:

- Try to match the generation manifold and the real data
manifold

- Diffusion-step:

- Try to distribute the probability mass on the generation
manifold fairly according to the real data distribution

- D is firstly comparing between real data and the encoded data

— much harder!

Mode Regularized GANs

(IAI\ - - »

.
. . \ y ‘ [. ’ »
Reg-GAN - k ¢
A
.
Epoch | Epoch 200 Epoch 400 Epoch 600 Epoch 800 Epoch 1000 Target

(Che et al., 2017)

Mode Regularized GANs

MDGAN

Regularized n
-GAN |

ALI

VAEGAN

DCGAN

(Che et al., 2017)

Solution 2: Encoder-incorporated

- Mode Regularized GANs (Che et al., 2017)
- Energy-based GANs (Zhao et al., 2017)
- Boundary Equilibrium GANs (Berthelot et al., 2017)

* elc.

Solution 2: Encoder-incorporated

- Energy-based GANs (Zhao et al., 2017)
D—[6)— |
- leng—peg—dsp —¢
&— .
-+ Boundary Equilibrium GANs (Berthelot et al., 2017)

e
R
[X |——
"p"
(Zhao et al., 2017)

(Berthelot et al., 2017)

Solution 2: *Noisy Input

- Add noise to input (both real data and fake data)
before passing into D (Arjovsky & Bottou, 2017,
Theorem 3.2)

- Add noise to layers in D and G (Zhao et al., 2017)

- Instance Noise (Sgnderby et al., 2017)

- All these are indeed “enforcing” Prand P, to overlap

Review Mode Missing Problem

T i T AL e # L e
M e i) ‘% “ | CONST, ey p‘ CONST, e

Domain A

Domain B : - _
(a) (b) (c)

Figure 3. Illustration of our models on simplified one dimensional domains. (a) ideal mapping from domain A to domain B in which the
two domain A modes map to two different domain B modes, (b) GAN model failure case, (¢) GAN with reconstruction model failure
case.

(Kim et al., 2017)

Solution 2: Encoders-incorporated

. CycleGAN (Zhu et al., 2017)

G N AN
~_ L] Fo—) T F
F l X Y X Y cycle-consistency
woloeeanc et on oy “.\s ’losslr o
. cycle-consistency |,..s :
Dy T <
(a) (b) (c)

- DiscoGAN (Kim et al., 2017)

. DualGAN (Yi et al., 2017)

(Zhu et al., 2017)

Solution 2: Encoders-incorporated

. CycleGAN (Zhu et al., 2017)

F F
l F l X Y| X Y| e consistonce
‘ ‘(;)- C e-(,;);;lsten(,y
_DX DY (:y'(:le-(:;)(gzlsten(:y' e \ 5
(a) | (b)
‘C(GaFa DX:DY) :‘CGAN(GsDY7X7Y) ‘—.’E”]]
+£GAN(F3DX7Y3X) _y”l]
+ Aoy (G, F),

(Zhu et al., 2017)

(https://junyanz.github.io/Cycle GAN/)

Summer _ Winter

: : winter —» summer

=4

Phtograph Cezane

b - .’3", n e o8

r » - ey : ‘.i
g j.?q.am_a e 1 :: "
£t T e undh

orange — apple

Solution 2: Encoders-incorporated

- CycleGAN (Zhu et al., 2017)

Input CoGAN

CycleGAN

pix2pix

Ggun_d_ truth

Figure 5: Different methods for mapping labels<>photos trained on cityscapes. From left to right: input, BIGAN [5, 0]
CoupledGAN [27], CycleGAN (ours), pix2pix [|] trained on paired data, and ground truth.

(Zhu et al., 2017)

Solution 2: Encoders-incorporated

- CycleGAN (Zhu et al., 2017)
- BiIGAN (Donahue et al., 2017; Dumoulin et al., 2017)

- G:Z—>X + F: X—>Z

4) 4 N
2 ~q(z | @) z ~ p(z)
A

~ T, 2 T,z Q

= (, 2) { D(zx, z) } (#,2) b

© X

\J
x ~ q(x) z~p(x|z)

. v . v

(Dumoulin et al., 2017)

Solution 2: Encoders-incorporated

- DiscoGAN (Kim et al., 2017)

(Zhu et al., 2017)

Solution 2: Encoders-incorporated

- DiscoGAN (Kim et al., 2017)

(a) (b) (c)

(Zhu et al., 2017)

Difficult -~
\0'

- minimizing the KL divergence only is blased:
KL(Pg, ||Pr) — 2JSD(Pg, || Pr),

- because KL divergence is asymmetric, and thus it
IS not equally treated when G generates an unreal
sample and when G fails to generate real sample

- Therefore, G will generate too many few-mode (less
diverse) but real samples , a safer strategy

Content

- Solution 3: Wasserstein Distance

Solution 3: Wasserstein Distance

- Wasserstein GANs (Arjovsky et al., 2017)

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf Er .oz —
(g) VEHI(%T,PQ) (z,y) ’Y[Hx ?/H]

Solution 3: Wasserstein Distance

- Wasserstein GANs (Arjovsky et al., 2017)

- Wasserstein-1 Distance (Earth-Mover Distance):

W (B,,P,) =

inf
~eIl(P,.,P,)

43(ar,y)~7[|z —y|]

olVhy is it superior to KL and JS divergence?

Solution 3: Wasserstein Distance

Wasserstein-1 Distance (Earth-Mover Distance):

WP, P,)= inf B v llz —
(g) nyHl(%’r,IP’g) (z,y) 7[Hx yH]

where II(P,, P,) denotes the set of all joint distributions v(z, y) whose marginals
are respectively P, and P,. Intuitively, v(z,y) indicates how much “mass”
must be transported from x to y in order to transform the distributions P,
into the distribution P,. The EM distance then is the “cost” of the optimal
transport plan.

(Arjovsky et al., 2017)

Solution 3: Earth Move Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

Solution 3: Earth Move Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

P, Fp

(Vincent Herrmann’s blog)

Solution 3: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

W (P, Py) = inf (2, y)~ -
(Br,Pg) = _Jnf Ey) Lz =yl]

- The distance is shown to have the desirable
property that under mild assumptions

- It Is continuous everywhere and

- differentiable almost everywhere.

(Arjovsky et al., 2017)

Solution 3: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

W(P, P,)= inf E. .o lz—
(P, Py) i e Lz =yl

- The distance is shown to have the desirable
property that under mild assumptions

* And most importantly, it can reflect the distance
of two distributions even if they do not overlap,
and thus can provide meaningful gradients

(Arjovsky et al., 2017)

1.0
o

0.8}

0.6

0.4

0.2

0.0

Solution 3: Wasserstein Distance

-1.0

-0.5 0.0 0.5

Wasserstein Distance

1.0

0.6

05}
T 04

% 0.3

0.2

0.1

0.0

-1.0

-0.5

0.0 0.5

JS Divergence

(Arjovsky et al., 2017)

1.0

Solution 3: Wasserstein Distance

- Wasserstein-1 Distance (Earth-Mover Distance):

WP, Py) = inf (2, y)~ -
(P, Py) i e Lz =yl]

- By applying the Kantorovich-Rubinstein duality
(Villani, 2008), Wasserstein GANs becomes:

minmax E [D(z)] - E [D(#))]

(Arjovsky et al., 2017)

Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

] < | D — E |D(x
minmax E _[D(z)] - E [D(&))]
- In other words, D is the set of 1-Lipschitz functions

+ Lipschitz continuity

(Arjovsky et al., 2017)

Lipschitz Continuity

- real-value function: f: R—> R

* positive constant: K
f(z1) — f(z2)| < Kz — 2]

- |In other words, a Lipschitz continuous function has
bounded first derivative. Intuitively, the slope of a KK-
Lipschitz function never exceeds KK, for a more

general definition of slope.

dy (f(21), f(22)) < Kdx (21, z2)

(Wikipedia)

Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

minmex B [D@)] - E [D@)]

- To satisfy this requirement, WGAN enforces the
weights of D lie within a compact space [-c, ¢/ by

applying weight clipping

(Arjovsky et al., 2017)

Wasserstein GANS

- This new value function of WGAN gives rise to the
additional requirement that the discriminator must
lie within in the space of 1-Lipschitz functions:

minpax B (P@)] - E [D@)]

- Also, WGAN removes the sigmoid layer in D
because by using Wasserstein distance, D in
WGAN is doing regression rather than classification

(Arjovsky et al., 2017)

Wasserstein GANs

1.0 ' '

\ — Density of real
0sl — Density of fake |
—— GAN Discriminator

—— WGAN Critic

—0.2 Vanishing gradients ’
in reqular GAN
-0.4 | | |]] !]
8 —6 —4 -2 0 2 4 6 8

(Arjovsky et al., 2017)

{4

Difficutt

- when:

L(D*,g9) =2JSD(P,.||P,) —2log?2

-+ The JS divergence for the two distributions P and
Py is (almost) always log2 because Prand Py hardly
can overlap (Arjovsky & Bottou, 2017, Theorem
2.1~2.3)

- This results in vanishing gradient in theory!

Wasserstein estimate

Wasserstein GANs

This new value function of WGAN seems correlate
with the quality of the generated samples:

B

-~
P
-

€

— MLP 512

ﬁ

Wasserstein estimate

100000 200000 300000 400000 500000 600000
Generator iterations

35 F

3.0 p

— DCGAN

100000 200000 300000 400000 500000 600000
Generator iterations

(Arjovsky et al., 2017)

Wasserstein GANs

— MLP 512
3.0 | _

2.5 F =

Lani
' !
as

Wasserstein estimate

0.0

| | | | |
0 100000 200000 300000 400000 500000 600000
Generator iterations

(Arjovsky et al., 2017)

Wasserstein GANs
KL

o vo | [S
;ﬁ HMEN!

a- | | |

-
-

j"i-""

~,

>
E—

Top: WGAN with the same DCGAN architecture. Bottom: DCGAN

(Arjovsky et al., 2017)

Wasserstein GANs

Orlllll

A

Rt

S NI TT,
A

R L LA

ulllllrlll‘

N
-

-t.llllllllllll

)

UL S S S

e e e e e e e i

NORORNOR O

l'l'l'lll‘ll

(lll(lllrlrl
Illlrtl"l'

e 2 2

004,04.'4'::.,

R

I'lr""'llal

e e

RN

R A e

e e e e e

“ . h'y

.-

RO e et
!.l’lllll

TALLALELALLY

~

e S
P e A i e

.il'l'l"'ll

NN

N

O

AR ARA LR LALLM

DCGAN, no batch norm.

tecture, no batch norm. Boftom

WGAN with DCGAN archi

Top

(Arjovsky et al., 2017)

"

Top: WGAN with MLP architecture. Bottom: Standard GAN, same architecture.

(Arjovsky et al., 2017)

Gradient norm (log scale)

10 -

o

|
it
o

|
[~
S

A

| w Gradient penalty

—

Improved Wasserstein GANs

- The drawbacks of weight clipping

Gradient penalty

[— Weight clipping (¢ = 0.001) Weight clipping

— Weight clipping (¢ = 0.01)
- Weight clipping (¢ = 0.1)

-

13 10 7 4 1 —-0.02 -0.01 0.00 0.01
Discriminator layer Weights

(a)

002 —050 —0.25 0.00 025 0.50
Weights

(b)

* bias D toward much simpler functions

(Gulrajani et al., 2017)

Improved Wasserstein GANs

- The drawbacks of weight clipping

8 Gaussians

25 Gaussians

Swiss Roll
Weight clipping

Gradient penalty

at the real data plus Gaussian noise.

Figure 1: Value surfaces of WGAN critics trained to optimality on toy datasets. Critics trained with
weight clipping fail to capture higher moments of the data distribution. The ‘generator’ is held fixed

(Gulrajani et al., 2017)

Improved Wasserstein GANs

The drawbacks of weight clipping

% —— Weight clipping (¢ = 0.001) _~
& 10— Weight clipping (¢ = 0.01) -
bOD —— Weight clipping (¢ = 0.1)

= 0l Gradient penalty

: _—

—

-

-

~ —].O~

-

o=

i

= —20 -

O

13 10 7 4 1
Discriminator layer
(Gulrajani et al., 2017)

Improved Wasserstein GANs

- The optimal D under WGAN:

- has gradients with norm 1 almost everywhere
under Prand Py

- The objective of improved WGAN-GP:

L= :i':rqu [D(i)] B :nrj:IPr [D(ZB)] o)\if:r\jjﬁ)):i: [(”V.’ED(QE)HZ - 1)2}

_—

Original critic loss Our gradient penalty

(Gulrajani et al., 2017)

Improved Wasserstein GANs

Convergence on CIFAR-10 Convergence on CIFAR-10
7 7
b >

6 61
= = s
Ug) R mg ok
84 84
= —— Gradient Penalty (RMSProp) =, — Gradient Penalty (RMSProp)

9 —— Gradient Penalty (Adam) 9 —— Gradient Penalty (Adam)
—— DCGAN —— DCGAN
ll T T T 1' L] T T
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4

Generator iterations x10 Wallclock time (in seconds) <10

Improved Wasserstein GANs

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basehne (G: DCGAN, D: DCGAN)

Take-home Messages

- Try WGAN-GP
- Try noisy input

- Try specific architecture (with careful analysis of the
certain problem)

- Try different type of the noise

- Checklist here: https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks

Thanks for your attention!
Any guestions?

K& — 4w Q3T

References

- Arjovsky and Bottou, “Towards Principled Methods for Training Generative
Adversarial Networks”. ICLR 2017.

- Goodfellow et al., “Generative Adversarial Networks”. ICLR 2014.

- Che et al., “Mode Regularized Generative Adversarial Networks”. ICLR 2017.
- Zhao et al., “Energy-based Generative Adversarial Networks”. ICLR 2017.

- Berthelot et al., “BEGAN: Boundary Equilibrium Generative Adversarial Networks”.
arXiv preprint 2017,

- Sonderby, et al., “Amortised MAP Inference for Image Super-Resolution”. ICLR 2017.

- Arjovsky et al., “Wasserstein GANs”. ICML 2017.

- Villani, Cedric. “Optimal transport: old and new”, volume 338. Springer Science &
Business Media, 2008

References

- Jun-Yan Zhu*, Taesung Park*, Phillip Isola, Alexei A. Efros. “Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks”. arXiv preprint 2017.

+ Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, Jiwon Kim. “Learning to
Discover Cross-Domain Relations with Generative Adversarial Networks”. ICML
2017.

- Zili Yi, Hao Zhang, Ping Tan, Minglun Gong. “DualGAN: Unsupervised Dual Learning
for Image-to-Image Translation”. arXiv preprint 2017.

- Jeff Donahue, Philipp Krahenbuhl, Trevor Darrell. “Adversarial Feature Learning”.
ICLR 2017.

- Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, Aaron Courville. “Adversarially Learned Inference”. ICLR 2017.

- Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville.
“Improved Training of Wasserstein GANSs”. arXiv preprint 2017.

References

- Mehdi Mirza, Simon Osindero. “Conditional Generative Adversarial Nets”. arXiv preprint 2014.

- Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus. “Deep Generative Image Models
using a Laplacian Pyramid of Adversarial Networks”. arXiv preprint 2015.

- Alec Radford, Luke Metz, Soumith Chintala. “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. ICLR 2016.

- Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee.
“Generative Adversarial Text to Image Synthesis”. ICML 2016.

- Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen.
“Improved Techniques for Training GANS”. arXiv preprint 2016.

- Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris
Metaxas. “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative
Adversarial Networks”. arXiv preprint 2016.

- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. “Image-to-Image Translation with
Conditional Adversarial Networks”. CVPR 2017.

References

- Yaniv Taigman, Adam Polyak, Lior Wolf. “Unsupervised Cross-Domain Image
Generation”. ICLR 2017.

- lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, Yoshua Bengio. “Generative Adversarial Nets”. NIPS 2014.

- Jun-Yan Zhu, Philipp Krahenbuhl, Eli Shechtman and Alexei A. Efros. “Generative Visual
Manipulation on the Natural Image Manifold”, ECCV 2016.

- Huikai Wu, Shuai Zheng, Junge Zhang, Kaigi Huang. “GP-GAN: Towards Realistic High-
Resolution Image Blending”. arXiv preprint 2017.

- Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, Jason Yosinski. “Plug & Play
Generative Networks: Conditional lterative Generation of Images in Latent Space”. CVPR
2017.

