We cast expert finding into matching problem:

» Expert Finding on Social Media is challenging!
O Information on Social Media is noise
O Expert # Celebrity
O Expert is domain specific

» Expert Knowledge is in What they say
O Tweets
O Retweets

» Knowledge is Semantic

O Latent topic
» Knowledge is
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» Pachinko Allocation Model
» Hierarchical Knowledge Tree
» For Each User

» For Each Domain

Topic Correlations:
LDA and other topic require that each topic should
be independent with each other.

Instead, PAM can capture topic correlations.

Conclusions

» We formulate the expert finding task as a tree
matching problem with the hierarchical
knowledge representation.

» The experimental results demonstrate the
advantage of using 5-level PAM and semantic
enhancement against n-gram models and LDA-
like models.

» |t is flexible to incorporate more information to
enrich the hierarchical representation.
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Embedding for Tree Node

» Motivation

rQot O Words in the nodes are sparse

/ \ O Contexts on Social Media are sparse

> Model

O Skip-Gram in word2vec tool
» Calculation

O Cosine similarity
O Directly serve for approximate matching

by Approximate Tree Matching

» Edit distance Based Matghing
» Sum of the Cost of Editifng Operation Sequence

O Substitution

0, a=0>
o(a—b)=<¢ sim (a,b), sim(a,b)>0.55
MAX_VALUE, otherwise
O Insertion MAX_VALUE
O Deletion MAX_VALUE

Dataset and Experiments

> The experiments are conducted on 5 domains (i.e., Beauty Blogger, Beauty Doctor,
Parenting, E- Commerce, and Data Science in Sina Microblog.
» For PAM:

O Training: #113,924 posts from 40 experts in each domain.
O Testing: 40 users randomly selected from the official expert lists as positive, 40
wrongly categorized users as negative.
O Parameters: 5-level PAM, 1=10, J=20, K=20.
» For Word Embedding:
O Model: Skip-Gram
O Training: another 25 million Sina Microblog posts and nearly 100 million tokens.
O Parameters: 50 dimensions.

Precision Recall F-Score

Approach , . .
Macro Micro Macro Micro Macro Micro
unigram 0.380 0.484 0.615 0.380 0.469 0.432
bigram 0.435 0.537 0.615 0.435 0.507 0.486
LDA 0.430 0.473 0.540 0.430 0.474 0.451
Twitter-LDA 0.6/5 0.763 0.680 0.430 0.6/5 0.451
PAM 0.720 0.818 0.720 0.720 0.714 0.769

» In general, LDA, Twitter-LDA and PAM outperform unigram and bigram, showing the
strength of latent semantic modeling.

O Tree representation over vector space feature representation
O Word embedding and partial matching

» The higher micro-recalls of PAM demonstrate its better generalization ability.
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