A Hierarchical Knowledge Representation for Expert Finding on Social Media

¹Computing Department, Hong Kong Polytechnic University ²Key Laboratory of Computational Linguistics, Peking University

root

y-topic

z-topic

word

Semantic Matching for Expert Finding

We cast expert finding into matching problem:

- > Expert Finding on Social Media is challenging!
 - Information on Social Media is noise
 - Expert ≠ Celebrity
 - O Expert is **domain** specific
- Expert Knowledge is in What they say
 - Tweets
 - Retweets
- Knowledge is **Semantic**
 - Latent topic
- ➤ Knowledge is HIERARCHICAL
 - Generic to specific

Embedding for Tree Node

- Motivation
 - Words in the nodes are sparse
 - Contexts on Social Media are sparse
- Model
 - Skip-Gram in word2vec tool
- Calculation
 - Cosine similarity
 - Directly serve for approximate matching

Approximate Tree Matching

- Edit distance Based Matching
- > Sum of the **Cost** of Editing Operation Sequence
- > 3 Editing Operations:
 - Substitution

- Insertion
- MAX_VALUE
- MAX_VALUE Deletion

Hierarchy for Knowledge Tree

- Pachinko Allocation Model
- Hierarchical Knowledge Tree
- > For Each User
- > For Each Domain

Topic Correlations:

LDA and other topic require that each topic should be independent with each other.

Too strict!

Instead, PAM can capture topic correlations.

Dataset and Experiments

- > The experiments are conducted on 5 domains (i.e., Beauty Blogger, Beauty Doctor, Parenting, E- Commerce, and Data Science in Sina Microblog.
- > For PAM:

. . .

- O Training: #113,924 posts from 40 experts in each domain.
- O Testing: 40 users randomly selected from the official expert lists as positive, 40 wrongly categorized users as negative.
- O Parameters: 5-level PAM, I=10, J=20, K=20.
- > For Word Embedding:
 - Model: Skip-Gram
 - O Training: another 25 million Sina Microblog posts and nearly 100 million tokens.
 - O Parameters: 50 dimensions.

Approach –	Precision		Recall		F-Score	
	Macro	Micro	Macro	Micro	Macro	Micro
unigram	0.380	0.484	0.615	0.380	0.469	0.432
bigram	0.435	0.537	0.615	0.435	0.507	0.486
LDA	0.430	0.473	0.540	0.430	0.474	0.451
Twitter-LDA	0.675	0.763	0.680	0.430	0.675	0.451
PAM	0.720	0.818	0.720	0.720	0.714	0.769

- > In general, LDA, Twitter-LDA and PAM outperform unigram and bigram, showing the strength of latent semantic modeling.
- Our 5-level PAM gains observed improvement over Twitter-LDA.
 - O Tree representation over vector space feature representation
 - Word embedding and partial matching
- > The higher micro-recalls of PAM demonstrate its better generalization ability.

Conclusions

- > Hierarchy is important!
- Correlations between topics is important!
- Word embedding well tackled sparseness!
- We formulate the expert finding task as a tree matching problem with the hierarchical knowledge representation.
- > The experimental results demonstrate the advantage of using 5-level PAM and semantic enhancement against n-gram models and LDAlike models.
- > It is flexible to incorporate more information to enrich the hierarchical representation.

Contact Us

{csyli, cswjli}@comp.poly.edu.hk lisujian@pku.edu.cn

